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- A STRICT MAXIMUM PRINCIPLE
FOR AREA MINIMIZING HYPERSURFACES

LEON SIMON

It is a well-known consequence of the Hopf maximum principle that if M|,
M, are smooth connected minimal hypersurfaces which are properly embedded
in an open subset U of an (n + 1)-dimensional Riemannian manifold N, if
M, ~ M, M, ~ M, C U, and if M, lies locally on one side of M, in a
neighborhood of each common point, then either M; = M, or M; N M, =

If we replace the hypothesis that Mj M; € 3U by the hypothesis that the
(n — 1)-dimensional Hausdorff measure (i.e. 5 "’1) of ]\7 M; N U vanishes
for j = 1,2, then we still have either M; = M, or M, ﬂ M, = @. However
this latter alternative leaves open the question of whether or not M, N M, N U
= (&, and it is this question which interests us here.

Here we settle the question affirmatively in the area minimizing case.
Specifically (in Theorem 1 of §1) we show that M, N M, N U= & if
M, N"M,=@ in case M;, M, are the regular sets (in U) of integer
multiplicity currents T, 7, which are mass minimizing in U and which have
zero boundaries in U. (Notice that in this case we have automatically that
92””“1(]\71. ~ M NU)=0, j=1,2, by the regularity theory for codimension
1 currents.)

Our interest in this problem originated from the paper [1], and the question
was again raised in [2, Problem 3.4]. The proof of the result (given in §2)
depends rather heavily on the main results of [1].

1. Preliminaries and statement of main result
The optimal version of the main theorem concerns codimension 1 integer
multiplicity locally rectifiable currents T (called simply “locally rectifiable” in
[3] and henceforth simply called “integer multiplicity” here) which are mass
minimizing in an open set U of the smooth (n + 1)-dimensional oriented
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Riemannian manifold N. Thus if W is open and W is a compact subset of U,
then ‘ ‘
M, (T) < My (S)
for each integer multiplicity S with S = 97 in U and spt(S — T)c c W;
“here 35 is the boundary of S in the sense of currents, spt(S — T') denotes the
support of the current S — 7, and M ,(S) is the mass of S in W (= sup S(w),
where the sup is over smooth n-forms w with compact support in W and with
length |w| < 1 at each point of W). We shall actually be interested in the case
when 07 = 0 in U; i.e. when T(dw) = O for each smooth (n — 1)-form w in N

with support of w C ¢ U.

We shall have occasion to use “oriented boundaries” in U; that is integer
multiplicity (in fact multiplicity 1) currents T of the special form T = (J[ EI)LU,
where E is an s#"*l-measurable subset of N and [E] denotes the (n + 1)-
dimensional current obtained by integration of (n + 1)-forms with compact
support in N over the subset E. Actually if U is such that the n-dimensional
integral homology of the pair (N, N ~ U) is zero, then any integer multiplicity
current T with 7 = 0 in U can be decomposed (in U) into an M ;,-convergent
sum L7, of such oriented boundaries in such a way that M, is additive (and
hence so that each 7, is minimizing in U if T is minimizing in U). (See e.g. [3,
4.5%or[8,27.8, 33.2])

We shall also use the standard compactness and regularity theory for
oriented boundaries which minimize mass in U; for this, and other standard
facts about currents, we refer to e.g. [3], or [8, Chapters 6,7].

For any integer multiplicity T we let reg T' (the regular set of T') be the set
of points £ € spt T such that there is a neighborhood W of £ in N with

T\W = k[M],
where k& is an integer and M is a smooth connected compact oriented
embedded hypersurface in W with 9M C 0W and with £ € M, and where [ M]
means the multiplicity 1 current obtained by integration of smooth n-forms
(with compact support in N) over the hypersurface M. (Notice of course that
k = +1in case T is an oriented boundary in U.) Also, we let
singT = sptT ~ regT.

For A > 0 we let (A) denote the homothety of R"*! taking x to Ax.

We now state the main theorem: ’

Theorem 1. Suppose T,, T, are integer multiplicity currents with 0T, = 9T,
=0 in U, T}, T, mass-minimizing in U, and regTy N1egT, N U= &. Then
sptT; NsptT, N U= @.

Remark 1. The main content of this theorem lies in the fact that sing7; N
singT, N U = @. Indeed previous work of Miranda ([7], also [8, 37.10])
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establishes sing7), N regT, N U = &. This latter result was recently shown to
be true without the minimizing hypothesis by Solomon and White [9].

Remark 2. In case N = R"*! and g is the standard Euclidean metric,
Theorem 1 is straightforward to prove if spt7; NsptT, N U is a priori
assumed to be a compact subset of U, because in this case we can use a
standard “cut-and-paste” argument (see e.g. [1], [6, 1.20], or [8, 37.10]) to show
that spt7T) NsptT, N U= &.

Using Theorem 1 we can establish the following corollary for oriented
boundaries of least area.

Corollary 1. Suppose T) = QLE, LU, T, = BLE, LU are minimizing in
U, with EEnNUCE,N U and with sptT, N U and sptT, N U connected.
Then either Ty = T, or sptT; NsptT, N U = .

Proof. Take an open geodesic ball B,(§) C U with p small enough to
ensure that Fp(g) is diffeomorphic to the closed ball in R”*1, and let S;, S, be
components of reg 7} N B,(§), reg T, N B (). Since E; C E, it follows that S,
lies locally on one side of S, near each point of S;. A well-known application
of the Hopf maximum principle (see e.g. [6, pp. 103, 104]) then shows that
SSNS,+ 3 =8=3S,.

Next note that S;, equipped with orientation from 7}, is minimizing in B,(§)
and has zero boundary in B () (see e.g. [8, 37.8]). Thus in the case S; N S, =
& we can apply Theorem 1 (with U = B, (£)) to deduce that S; N S, N B,(£)
= . On the other band for any such components S; which intersect B, ,,(£)
we have M(S,) > cp” (see e.g. [3, 5.1.6]), so at most finitely many components
of reg T, N B,(§) can intersect B, ,,(£).

Combining the above facts and using the given connectedness of spt7; N U,
spt T, N U, the corollary now directly follows.

We now proceed o the proof of Theorem 1. We shall need the following
lemma, which is an easy consequence of the regularity theorem for codimen-
tion 1 minimizing currents.

In this lemma we let x = (x},-- -, x"*!) € R"*! be normal coordinates for
N near x,, with origin x = 0 corresponding to x, and with 7, N identified -
with R"*! via these coordinates in the usual way. The metric g is then
g,,(x) dx'dx’ with g, (0) = §,; and 9g,,/3x*(0) = 0. We can take homotheties
(AT (X > 0) in terms of these local coordinates, and (A1) .7 is minimizing
relative to the metric g; (Ax) dx‘dx’ in case T is minimizing relative to g.

Lemma 1. Let T = (B[ EDLU minimize in U, xo € sptT N U, and v be the
orienting unit normal for T (so *v = T), and define Q, to be the set of points
x € reg T which satisfy

(i) dist(x,sing T') > 8\x| and

(i) sup{|x — y|w(x) = »(y)l: y € 1egT, 0 < |y — x| < Ojx|} < (d]x) "
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Then there are p, = py(xy, T)> 0 and '00 = 0y(x0,T) > 0 such that Q4N
3B,(x0) # @ Yp € (0, pyl, 6 € (0,6,
Proof. 1f the lemma is false we can find a sequence p; | 0 and

{x € regT:|x| = p;, dist(x,sing T) > j ',

@ sup [Ix =y (x) = (»)]] <jp]1} =g.
yereg T |x—y|</p,

Let T, = ( pj‘l) «71. From the existence of the tangent cones theorem (see e.g. [3,
5.4.3] or, [8, 37.4]) we know there is a subsequence { j'} (henceforth denoted
{j}) and a minimizing cone C = 3[F] in R"*" such that T, > C (weak
convergence of currents in R”*1), and spt T; converges to sptC locally in the
Hausdorff distance sense. By the De Giorgi-Allard regularity theorem this
latter convergence is actually in the C? sense locally near points of reg C + &.
Thus 3y € regC N §", and we have fixed § > 0 and a sequence y; € By(y) N
regT. N S"with y, > y, By(y) NsptT; C reg T, and

|x = 2| (x) — v (2)| < 07" forx,z € By(y) NregT,, x # z.
However in terms of the original T this means
By, (0,9) NsptT C regT
and
|x — z] 7w (x) = v(z)| < 077" forx,ze By, (p,y) NregT, x # 2,

and since p,y; € regT N dB, (0) and y; — y this contradicts (1) for sufficiently
large j. ‘

2. Proof of Theorem 1
It suffices to consider the case when T, T, satisfy the additional hypotheses

(*) T, = [E, LU, T,=30[E, LU, E, CE,,

for some open E,, E, C U. To see this, first note that we may assume (in view
of the local nature of Theorem 1) that U is diffeomorphic to a ball in R"*™.
Let S; be a component of reg7, N U equipped with a smooth orientation.
Then (see e.g. [8, 37.8)) S, is minimizing in U, 39S, =0 in U, and (by the
decomposition theorem (3, 4.5.17] or [8, 27.6]) we can write S, = 8|IEJ-]]LU for
some measurable E;, C U, j = 1,2. Since the density of S; is bounded below
by 1 on §J N U, after alteration on a set of # "*L.measure zero we may take
E; to be a component of U ~ ;. (Part of the conclusion here is that there is
more than one—in fact exactly 2—components of U ~ §;; this is of course a
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standard topological fact in case .Sj ~ §,N U= @.) Notice that then E; is
connected because S; is. Now let K = §; N S, N U (so that 5" 1K) = 0 by
the regularity theory, because S, N S, = @). By reversing orientations if
necessary, we can arrange that S, N E, # @ and S, ~ E, # @. Using the
connectedness of S}, S,, and the Poincaré inequality [3, 4.5.3], together with
the fact that # " Y(K)=0, it then follows that S, C E, UK and S, C
(U ~ E;) U K. We claim it follows now that E; C E,. Indeed otherwise (since
E, is connected) we could choose a closed path v in E; connecting a point in
E, to a point in S, thus showing S, N E; # @, hence S, N E; # @, which
contradicts the fact that S, ¢ (U ~ E,) U K C U ~ E,. Thus we have estab-
lished that S, = [ E|JLU, S, = o[ E,JLU with E, C E,. Since (cf. the argu-
ment in the proof of Corollary 1) at most finitely many components of reg 7},
reg T, can intersect a given compact subset of U, it now clearly follows that (by
localizing and using suitable components S;, S, as above) it is sufficient to
consider only case (*) of the theorem, as claimed.

We now suppose that we can find x, € spt7; N sptT, N U, and we show
that this leads to a contradiction. As in Lemma 1 we take normal coordinates
x = (x!,---,x"*!) for N with origin x = 0 corresponding to x, and with
tangent space T, N identified with R"*! via these coordinates. We can of
course assume without loss of generality that U is contained in this coordinate
neighborhood.

Still assuming ( *), we claim that we can reduce to the case when T}, 7, have
the same tangent cones at the point x, (= 0), in the strong sense that if {A} is
any sequence | 0, then there is a subsequence { A} (henceforth denoted {A})
such that both (A}'),T; and (A;'),.T, have the same cone as weak limit.
Indeed suppose there is a sequence {A;}|0 so that (A3"),T; and (A\}1) T,
converge to different cones C; = 3[ F] and C, = [ F,] in R"*!. Since E;, C E,
we have F; C F, (up to a set of Lebesgue measure zero). We can now use the
dimension reducing argument of [1] (appropriately modified) to give new 7},
T, satisfying the same hypotheses as T}, T, (with N = U = R"*1), but having
the same tangent cones at 0. To be precise, the dimension reducing argument
of [1] goes as follows:

We can suppose C;, C, (as above) contain a point y # 0 in the intersection
of their supports by virtue of Remark 2. Then either C;, C, have the same
cones at y (in the strong sense) or else there are distinct tangent cones
D, =93[G,], D,=0[G,] of C,, C, at y with G; C G,. But G,, G, are
cylinders / X E;, I X E, ({ the line containing y at 0), hence (after slicing with
the hyperplane normal to /) we would have distinct (n — 1)-dimensional
minimizing currents C; = [ E,l, C, = 0l E,] in R" with E; C E,, 0 € sptC,
N spt C,. Next note that no such distinct C;,C, can exist in case »n < 6,
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because C,,. C, are hyperplanes if n < 6 by the regularity theory for codimen-
sion 1 minimizing currents (see e.g. [4] or [8, §37]). Thus the above arguments
must (by induction on n) lead to a situation where we have distinct m-
dimensional minimizing hypercones (m > 6) T, Tz, with T, = 3[H,], T, =
[ H,], with H, c H,, and with a y € sptT, N sptT, such that T;, 7, have
the same tangent cones (in the strong sense) at y. Also by [1, Theorem 2]
reg T, reg T, are connected. By an application of the Hopf maximum principle
similar to that in Corollary 1 we can then also conclude reg 7, N reg T, =
Thus we may as well (and we shall) assume to begin with that 7;, T, have the
same tangent cones at x,. (Otherwise replace T, Ty, x, by T;, T,, y; notice
that this does not upset the reduction (*).)

Now let py, 4,8, C regT; be as in Lemma 1 with 7; in place of T and
define h(x) = dist(x, sptT,), x € sptT,. Because 77, T, have the same tangent
cones at x, (in the strong sense), we know that, for each 6 < 6,
r‘lsuplxlz,,xeﬁah(x) — 0 as 7 — 0. In particular taking p; | 0 such that
(1) o' sup  h(x)>3p sup h(x) foreachp<p,

|x|=p;,x €0y, [x|=p,x €8,
we have that for each 8 < 1
(2) sup  h(x)<28 sup  h(x).

x€Qy ,|x|=0p; xEQq |x|=p,

As in Lemma 1, there is a subsequence { j} (henceforth denoted { j}) such
that (p;"),T, = C, I = 1,2, and such that spt(p;') . T, converges locally in the
Hausdorff distance sense in R"*! to sptC, /= 1,2. By the codimension 1
regularity theory (and in particular by the Allard-De Giorgi theorem—see e.g.
[8, §37], [4]) and from the fact that reg C is connected [1, Theorem 2], we see
that we can find C? functions 4{?, h{) defined over connected domains
U, C reg C such that

{x € reg C: dist(x,singC) > §|x|, 6, < |x| < Hj‘l} c U, forsome ¥, |0,

3
) lim |0 |22 =0, =12

Finds

(1h)% = sup(|x| Y h(x)| + |VA(x)| + |x]| |V 2h(x)]), and such that for each
¢ € (0,1) and all j > j(8) the following hold:

(4) {x S reg(pjf )#T,:dlst(x,,smgC) > @)x|, 6 < |x| < 0‘1}
< G < reg(p]), T,
(5) (p7)(Qup) N{x:6 < |x| <671}
c {x € reg(pjfl)#T1 :dist(x, singC) > 0|x|}.
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In (4), G{? = graph of h{)) = H{/)(U)), where H{/)(x) = x + h{(x)v(x), »
the unit normal of reg C pointing into F (recall C = 3[ F]).

By (3), (4), (5), for any given 8 € (0,1) there are maps pj:(pjfl)(SZw) N
{x:8 < |x| < 671} > Urwith HP(p,(x)) (= p,(x) + k) p,(x))¥( p,(x))) =
x and Ju,(p;(x)) < p;*h(p;x) < 2u;( p(x)) for all x € (07N Ry9) N {x:6 <
|x| < 87!} and for all j sufficiently large, where 4 is as in (2) and where
u,=h? —hY on U. (Since u; # 0 (regT; NregT, = @), we may assume
that u; > 0 and U,.) Then (2) implies
(6) sup uj(pj(x)) < 46 sup uj(pj(x))

x€(p7") R, |x|=8 x€(p; )y, |x|=1
for all sufficiently large j (depending on 8).

Now since reg7;, reg7, are minimal hypersurfaces relative to the metric
g:;(x)dx'dx’, we know (by virtue (3) and (4)) that the difference u;, = h{/) —
h$) satisfies an equation of the form

(7) ACuj+]AC[2uj=div(aj-Vuj)+bj-V'uj+Cjuj,

with a;, b;, ¢; converging uniformly to zero on compact subsets of reg C; here
A is the Laplacian on reg C and A is the second fundamental form of reg C.

Since u; > 0, by virtue of (7) and the connectedness of reg C we can use the
Harnack inequality for divergence-form elliptic equations (in R"—see e.g. [5,

§8.8]) to deduce
(8) sup u; < exinfu;,  j > j(K),
K K

for each compact K C regC. Hence the C** Schauder theory (e.g. [5, §8.11])
tells us that

(9) [tj]cracxy < €k ir]}f u;

for any compact K C regC and for sufficiently large j (depending on X).
Then letting y, be any fixed point of reg C we conclude there is a subsequence
{u,} (henceforth denoted {u;}) such that (u( Vo)) lu ; converges locally in the
C! sense on reg C to a positive solution u of

(10) Acu +|Au=0
with u(y,) = 1. In particular
(11) u>0, Au<0 onregC.

We now want to apply the Harnack theory of [1] to u. Since C is
minimizing, # " *(singC) =0 and M(CLB,(y)) < ¢p” ¥p >0, y € sptC.
Because of this it is easy to construct a sequence of functions {¢, C C*(reg C)
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such that ¢; = 1 on {x € regC:; " < |x| <, dist(x,singC) > j 7'}, 0 < ¢, <
1 everywhere on reg C, and

(12) J

2
. '>0
reg CN B (0)

Ve,

for each fixed R > 0. Now for Q > 0 let u, = min{u, Q}, so that by (11) we
have

(13) Vg V=0
reg C

for each nonnegative Lipschitz { with compact support in regC. Let €
CP(R™™), ¥y = Y|reg C, and replace { in (13) by gpyzuy'. Then (13) gives
-2 2,2 2 2 2, 42 2
_/;egC“Q iVqu Ya®; < C_/;egc(|vxl/*l @ + 1l/’k|V(pj‘| )’

so that by (12) and the fact that ¢, — 1 uniformly on compact subsets of reg C,
we have

(14)

2
f |Vuy| < oo foreach R >0,Q>0.
Br(0)Nreg C

Also, replacing { by @;{, in (13), and letting j 1 oo, we have
reg C

for each nonnegative ¢ € C*(R"*!), where again ¢, = ¢ |regC.
In view of (14) and (15) we can indeed apply the Harnack theory of [1] in
order to deduce that

inf ug=c f Up-
reg CN B, (0) reg CN By (0)
Letting Q 1 co we thus have
inf uzecf u> 0.
reg CN B,(0) reg CN B, (0)

In terms of the functions u; this tells us in particular that for nonempty
compact L C reg C N B, ,(0) thereis j, = jo(L) such that

irzf u; 2 Cuj()’O) Vi = Jos
where ¢ is independent of L. Thus in view of (8) we deduce that there is
J =K, L)
(16) ‘ irLlf u; > cx Sl}l(p u;, Yj=j
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for any compact L,K CregC N B, ,(0) with L, K+ &, where cx >0
depends on K butnoton L.

But now, taking K = p,((p;")R, N 8B,) and L = p,((p;)R, N 3By), we
see that (6), (16) are contradictory for sufficiently small #. This completes the
proof of Theorem 1.
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